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Abstract

®

CrossMark

Field-plated vertical Ga, O3 rectifiers were operated up to 600 K with reverse breakdown
voltage (V) of 750 V, 950 V at 500 K and 1460 V at 400 K. The barrier height was 1.3 eV at
300 K and reduced to 0.7 eV at 600 K, with ideality factors of 1.05 4+ 0.05 and 2 £ 0.1,
respectively at these temperatures. On-state resistance, Ron, was 13 m§2 cm? at 300 K and

41 mQ cm? at 600 K, leading to respective Baliga figures of merit of 151 MW cm~2 (300 K)
and 13.9 MW cm~2 (600 K). The on—off ratio was >10* for all temperatures measured. The
leakage current showed a good fit to the thermionic field emission model when the reverse
voltage was less than 80 V, and it was dominated by the tunneling effect at higher voltage. The
transition voltage from thermionic emission to tunneling effect decreased as the temperature
increased. At high reverse voltage, a large number of electrons are injected into the drift region,
and the current shows an I o< V" relationship with voltage, indicating a trap-assisted
space-charge-limited conduction (SCLC) mechanism. We observed this SCLC relation when
the reverse voltage was larger than 400 V for 500 and 600 K. The associated trap energies for
these two regions were extracted as 0.2 and 0.4 eV, consistent with levels in the gap.

Keywords: Ga,0s, rectifier, power electronics

(Some figures may appear in colour only in the online journal)

1. Introduction

The development of power electronics technology based on
wide bandgap semiconductors is attracting much interest
because of the potential for significantly higher switching effi-
ciency and ability to operate at higher powers and temperat-
ures. Within the next decade, about 80% of all US electricity

* Author to whom any correspondence should be addressed.

1361-6463/21/305103+8$33.00

is expected to flow through power electronics. These include
power distribution systems, electric vehicle fast chargers,
data center power supplies, ship power systems, and renew-
able wind/solar energy integration. Both SiC and GaN power
electronics are now commercialized and provide more effi-
cient performance than conventional Si-based devices [1-3].
The combination of high breakdown voltage, low on-state
resistance and lower switching losses is improved in the
ultra-wide bandgap semiconductors [4—10] (such as Ga,0s,

© 2021 IOP Publishing Ltd  Printed in the UK
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diamond, and AIN). This leads to their high Baliga’s figure
of merit (BFOM), defined as . ,u.EL.3, where ¢, i, and E. are
the dielectric constant, carrier mobility, and critical breakdown
field strength, respectively.

Among these ultra-wide bandgap semiconductors, mono-
clinic gallium oxide (8-Ga;03) has recently attracted increas-
ing attention due to the availability of high quality, large dia-
meter single crystals from mature melt growth methods and its
attractive material properties of wide Eg of 4.6—4.9 eV, good
electron mobility (>200 cm?> V™! s~!) and estimated critical
breakdown field, E., of ~8 MV cm™!, yielding a relatively
high BFOM (>3000) with respect to silicon [11-23]. Com-
pared to other ultra-wide bandgap materials, the inexpensive
substrates lower the manufacturing cost for 5-Ga,03 power
devices for applications requiring high operation voltage and
high energy conversion efficiency.

A large literature on demonstration of power devices in
this materials system now exists, including vertical and lat-
eral MOSFETs and rectifiers [6—41]. The absence of prac-
tical p-type doping may be alleviated by use of other p-type
oxide semiconductors to form a pn heterojunction with Ga; O3,
such as NiO, Cu,O, Cul and Ir,03[26-32]. Some notable
recent advancements in device performance for Ga,O3 diodes
includes a 5 A/700 V junction Schottky barrier diode imple-
mented with p-type NiO layer [33], 1.86kV p—n junction diode
with NiO heterojunction [34], as well as demonstrations of
>100 A of absolute forward current using conventional field-
plated Schottky diodes [35].

Wide energy bandgap materials are suitable for high tem-
perature as well as high breakdown voltage applications. The
ability to operate at high temperature enables wide bandgap
devices to be attractive in terms of reduced package size and
minimal requirement for cooling. Hindered by its low thermal
conductivity, demonstrations of operation at high temperat-
ure for 3-Ga,0; are fairly limited. Wang et al [36] repor-
ted operation up to 600 K of rectifiers with beveled edge ter-
mination and spin-on glass passivation, achieving breakdown
voltage of ~500 V at this temperature. One way to increase
the breakdown voltage is to grow thicker layers, but to date,
the maximum drift layer thickness has been 30 yum, thinned
to 20 pum after the chemical mechanical planarization (CMP)
step needed to achieve a flat surface morphology [15].

In this work, we report operation of field plated Schottky
barrier diodes up to 750 V at 600 K, with reasonable leakage
current density. This was achieved by growing a 40 pm thick
drift layer, thinned to 30 pum after CMP, as well as lower car-
rier concentration. The devices exhibit a negative temperature
coefficient of breakdown and reverse leakage dominated by
thermionic field emission (TFE) when the reverse voltage was
less than 80 V, and by tunneling conduction at higher voltage.

2. Experimental

The drift region of the material consisted of a 30 um
thick, lightly Si doped epitaxial layer grown by halide vapor
phase epitaxy (HVPE) with minimum carrier concentration of
1.6 x 10" cm™3 (the maximum was ~3 x 10'® cm™3), and
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Figure 1. Nomarski microscope images of the HVPE layers before
(top, left and right) and after subsequent polishing to planarize the
surface (bottom, left and right).

this epitaxial layer was grown on a (001) surface orientation
Sn-doped 3-Ga,; 05 single crystal (Novel Crystal Technology,
Japan). The HVPE layer is actually grown initially to a thick-
ness of ~40 um, but then chemically mechanically polished
to planarize the surface by removing ~10 pum of material.
As seen in the Nomarski images of figure 1, this produces a
much smoother surface relative to the as-grown morphology,
but there is still some surface roughness after the CMP step. It
is important to note that this is a unique growth, the thickest
ever attempted at NCT and the process is not optimized.

A full area Ti/Au backside Ohmic contact was formed
by e-beam evaporation and was annealed at 550 C for 30 s
under N, ambient. 40 nm of Al,O5; and 400 nm of SiN, were
deposited as field plate dielectric using Cambridge-Nano-Fiji
ALD and PlasmaTherm PECVD tools. Dielectric windows of
40 x 40 pm was opened using dilute buffered oxide etchant
(BOE), and a 200 nm Ni/Au Schottky contact was deposited
with E-beam after lithography pattern followed by standard
acetone lift-off. Figure 2 shows a photograph and device geo-
metry of fabricated diodes, respectively. Of the 121 devices
on this chip, approximately 46 have very smooth morphology,
but this was not the only parameter that correlated with achiev-
ing high breakdown voltage. We had a yield of ~15% (~20
devices out of 121) with breakdown in the range 745-754 V.
The carrier concentration of these highest breakdown voltages
was typically <2 x 10'® cm~2 with no visible surface defects
within the active area of the device. The remaining surface
defects are due to the incomplete smoothing of the surface of
the HVPE-grown layer.

The current—voltage (I-V) characteristics were recorded at
1 MHz with a Tektronix 370 A curve tracer was used for for-
ward and reverse current measurements over the temperat-
ure range 300-600 K on a temperature-controlled stage. No
hysteresis was observed in any of the rectifier characterist-
ics. The forward direction was dominated by the thermionic
emission (TE) current, while in the reverse direction, the TFE
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Figure 2. Schematic of vertical rectifier structure (top) and
photograph of fabricated 5-Ga,O3 Schottky diode array with
40 x 40 pm squares (bottom).

and tunneling currents played an important role at high reverse
bias. To extract the barrier height (®},) and ideality factor (n),
we used the relationship for current density in TE theory, given
by [1, 3, 36]

J=Jyexp (eVa/nkT) [1 —exp (—eValkT)

where Jo = A* meg/moT? exp(®p/kT), e is electronic charge
and A* is the Richardson constant and V4 is the bias voltage
applied. The magnitude of the series resistance can also be
obtained from plots of d(V 4)/d(InJ) versus J, while the barrier
height is obtained from (kT/e) In(A*T?/Jy) [42, 43]. The built-
in voltage can be obtained from the C-V characteristics [43].
The fact that TFE was the dominant current transport mechan-
ism over most of the conditions investigated can be established
by the fact that the tunneling parameter Eoo/kT was ~1 [40],
where Ey is given by (eh/4m)[Np/m* £.]°° and h is Planck’s
constant and ¢, is the relative dielectric constant. If this para-
meter is much less than unity, then TE is significant and field
emission is dominant if this parameter is >1.

600 K

< 550K
+ 500K
+ 450K
+ 400K
- 350K
1 ’ 1 30.0 K
1.0 1.5 2.0
Voltage (V)

Figure 3. Forward /-V characteristic for rectifiers as a function of
temperature.
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Figure 4. Schottky barrier height and ideality factor retrieved from
diode forward /-V as a function of temperature.

Capacitance—voltage (C-V) characteristics were recorded
with an Agilent 4284 A Precision LCR Meter. The diode on/off
ratio is another figure-of-merit was measured when switching
from 2 V forward to reverse biases up to 100 V. The reverse
breakdown voltage was defined as the bias for a reverse current
of 1 mA.

3. Results and Discussion

The barrier height was 1.23 eV at 300 K and reduced to
0.7 eV at 600 K, with ideality factors of 1.05 + 0.5 and
2 £ 0.1, respectively at these temperatures, extracted from
the /-V-T characteristics in figure 3 and those parameters
plotted in figure 4. It is commonly observed that the barrier
height decreases with increasing temperature, as it is easier
for electrons to pass over the barrier since with pure TE there
would be a reduced barrier at elevated temperatures. This will
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Figure 5. On/off ratio when switching from 2 V forward bias to the
reverse biases shown on the x-axes at various temperatures.

lead to contributions from other transport mechanisms and the
commonly observed higher ideality factors at elevated tem-
peratures [40]. There may also be contributions from spatial
inhomogeneity of the Schottky barrier [40].

The temperature coefficient was —(2.1 £0.6) x 1073 eVK™!,

which is the same order of magnitude as the temperature
dependence of the band gap, namely (—4.5 x 107%) eV K~!
[38]. In Si, the temperature coefficient of the barrier height
also depends on the chemical nature of the metal, in contradic-
tion with models suggesting Fermi-level pinning at the center
of the semiconductor’s band gap [39]. In Ga,0s3, the situation
is more complex, with the dependence of barrier height om
metal work function being a function of the orientation of the
Ga,O; surface. It is generally the case that a number of factors
also have an influence on barrier height and its temperature
dependence. For Ga;03;, these factors include the interface
crystallography, contact inhomogeneities, the recombination
velocities on different surface planes of Ga,;Oj3 or for different
polytypes. For example, Lyle ef al [40] found a strong positive
correlation between the calculated Schottky barrier heights
and the work function of metal contacts on (100) 5-Ga;03, in
contrast to (201) 5-Ga,Oj3. Similarly, there were mixed results
for (010) 8-Ga, 03 [40]. The temperature dependence of bar-
rier height and ideality factor in our devices is consistent with
previous reports [36, 41]. We did not observe any significant
change in carrier concentration as a result of the temperature
cycling, as judged from the C—V measurements.

The on-state resistance of the rectifiers, Ron, Wwas
13 m cm? at 300 K and 41 m§ ecm? at 600 K, leading to
respective Baliga figures of merit of 150 MW cm~2 (300 K)
and 14 MW cm~2 (600 K). The highest previous result was
4 MW cm~2 at 600 K [36]. The series resistance of the highest
breakdown voltage rectifiers was typically between 200 and
300 2. The on—off ratio is another figure of merit in that
having high on-current and low leakage current in reverse
bias is desirable [44—47]. This was >10* for all temperatures
measured, as shown in figure 5.
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Figure 6. Reverse current density of the vertical 5-Ga,O3 Schottky
diode at various temperatures fitted to the TFE model for reverse
biases of 5-100 V.
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Figure 7. Reverse I-V-T characteristics at 400-600 K for rectifiers
at various temperatures.

As shown in figure 6, at lower voltages, reverse bias leakage
current is dominated by TFE [36, 37], which is dependent on
ambient temperature. However, with increasing voltage and
hence electric field, the carrier tunneling and other conduc-
tion processes becomes predominant, and the leakage currents
become more sensitive to temperature changes [48]. The leak-
age current shows a good fit to the TFE model when the reverse
voltage is less than 80 V in figure 6, and it is affected by the
tunneling effect when voltage is higher than 80 V. However,
the transition voltage from TE to tunneling effect did not fol-
low the universal monotonic temperature [36, 37]. The trans-
ition voltage actually decreased as the temperature increased,
as illustrated in figure 7, showing that impact ionization is not
the breakdown mechanism, since that should exhibit positive
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“t’ 6.0x10° Currently, all Ga,0j3 rectifiers show performance limited by
8 the presence of defects and by breakdown initiated in the
4.0x10%} depletion region near the electrode corners.
. When a higher reverse voltage is applied, a large number
2.0x108F of electrons are injected into the drift region, and the current
o shows an I o< V" relationship with the voltage, indicating a
: L trap-assisted space-charge-limited conduction (SCLC) mech-
0 200 400 600 800 anism [49, 50]. Under this mechanism, a current hump should
Voltage (V) be observed before the trap-filled limited voltage, and with

Figure 8. Experimental data for reverse current characteristics at
400-600 K and fit to an I o< V" relationship (top) and more detailed
view of 600 K reverse current characteristic and fit to an [ oc V"
relationship with n = 5.2 (bottom).

temperature coefficient [44]. The variation of Vg with temper-
ature can be represented by a relation of the form [45]:

Ve = Vo [1+B(T—To)]

where 3 = —3.4 + 1.4 V K'. We have previously found that
current increases in vertical geometry Ga, O3 rectifiers dur-
ing electron beam induced current measurements are dom-
inated by impact ionization of deep acceptors in the deple-
tion region. At room temperature, mobile hole diffusion in
the quasi-neutral region of Schottky diodes contributes sig-
nificantly to the charge collection efficiency [46]. Electron
beam induced current measurements indicated a strong amp-
lification of photocurrent in rectifiers, attributed to the Schot-
tky barrier lowering by holes trapped on acceptors near the
surface [47].

The breakdown fields calculated from the observed
breakdown voltages at different temperatures were

electrons continue to be injected into the drift region, it will
lead to a breakdown. This is commonly reported in GaN, i.e.
the logarithmic /-V curve shows that the current / is propor-
tional to V" until a hump (sharp transition in /-V curve) at
some threshold voltage. Such behavior can be modeled by
a space-charge-limited current (SCLC) conduction mechan-
ism with traps [51, 52]. Under reverse bias and below this
threshold, electrons injected into the drift layer partly contrib-
ute to conduction current and are partly captured by acceptor
traps known to be present. The hump threshold voltage repres-
ents the trap-filled-limited voltage of the acceptor traps, sug-
gesting the applied voltage overcomes the negative potential
formed by the un-neutralized electrons in traps and the ion-
ized donors in the n-Ga,O5 [51, 52]. This shows an SCLC
relation when the reverse voltage is larger than 400 V for 500
and 600 K in figure 7.

The reverse current characteristics at different temperatures
are shown in more detail in figure 8 (top), with all showing
I o< V" relationship. A fit to the data for the 600 K reverse
current characteristic is shown at the bottom of figure 8. The
data fits well to a relationship / o< V", where n is 5.2 and
the constant of proportionality is 7.6 x 1023, The associated
trap energies for these two regions were extracted as 0.2 and
0.4 eV from an Arrhenius plot, as shown in figure 9. Levels
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Figure 10. Comparison of operation temperature versus maximum
reverse bias for reported vertical Ga, O3 rectifiers. Previous data
comes from Virginia Tech [36], University of Canterbury [54],
University of Florida [55] and NIICT [56].

with these activation energies have been reported previously
in epitaxial Ga,O3_ but were ascribed to unknown impurities
and native point defects, respectively, with no specific inform-
ation on their microstructure [53].

The record high reverse breakdown at high temperature in
this work is a significant advance for high temperature switch-
ing applications for 8-Ga,0Os3, as shown in the reverse break-
down performance when compared with previous reported
works at elevated temperature in figure 10.

4. Summary and conclusions

Ultrawide bandgap semiconductors offer higher switching
frequencies, higher operating temperatures and lower losses
that improve power conversion efficiency. The remaining
challenges and new opportunities for Ga,O3 in high power
applications ranging from electric vehicles, medium voltage
motor drives, renewable energy interfaces, microgrids, to
emerging applications such as electric propulsion for air-
craft include more thermally stable contacts, development of
stable MOS gates, optimized edge termination and contin-
ued improvements in epi and bulk growth. For EV motor
drives, the improved efficiency of ultra wide bandgap semi-
conductor devices would enable either extended range for
the vehicle for a given battery charge, or a reduction in
the battery pack required to go a certain distance. The
required power modules would need large area MOSFETSs
delivering current in the range of 80-120 Amps per chip
at 650 to 1200 V. The promising results from vertical
Ga,O3 rectifiers reported previously in terms of break-
down voltages and now high temperature operation suggest
that thermal management issues become more important to
address.
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